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1. INTRODUCTION

Monopropellant hydrazine thruster technology has advanced to a state where
almost all unmanned spacecraft utilize this type of propulsion for attitude
control, orbit maneuvers, and trajectory correction. In addition to the sim-
plicity and reliability offered by these monopropellant hydrazine systems, the
putential spacecraft contaminants generated by the catalytic decomposition of
hydrazine are relatively innocuous compared with the products of bipropellant
rocket engines., Testing In space simulation facilities has demonstrated negli-
gible effects upon .ular cells, thermal control coatings, and radiant coolers,
even when subjected “o direct impingement by monopropellant rocket plumes
(Refs. 1-3), Analy:is has further indicated that such contamination of sen-
sitive spacecraft sugfaces 1s probably not a problem if the surface can be
maintained above 215 K (Ref. 4)., Flight measurements utilizing a 200 K quartz
crystal microbalance (QCM) located in the backflow region of a hydrazine thrus-
ter plume could not distinguish the effects of thruster operation (Ref. 5).
However, despite the seemingly favorable contamination picture presented by
hydrazine systems, there are still contamination concerns peculiar to this type
of propulsion. - )

Catalyst loss 1s one of the primary factors limiting the life of hydrazine
thrusters (Ref. 6). The breakup of catalyst particles is generally attributed
to thermal stresses or large pressure gradients within a catalyst pellet
(Ref. 7); the resulting fines are expelled through the rocket nozzle at high
velocities. This catalyst attrition phenomenon is especially severe on startup
when the reactor bed is at or below earth ambient temperatures; losses of 30% or
more of the catalyst mass have been reported (Ref. 8) after repeated cold starts,
Much effort has been expended in defining the engine design practices and duty
cycle effects on catalyst attrition (Refs. 9-11), and treatment or sorting of
the catalyst particles themselves also shows promise of reducing catalyst loss
(Ref., 12). Test results with an unspecified catalyst type indicate that the
fines produced will be of less than 20 um and:'will be primarily confined to a
region of the exhaust plume located within 12  of the nozzle centerline (Ref. 2).
Assuming good design practices on the part of the engine manufacturer and careful
thruster placement by the spacecraft designer, contamination or mechanical damage
to the spacecraft due to catalyst particle ejection will probably not be of
serious concern.

Perhaps the most serious contamination problem presented by hydrazine
thruster operation is in the area of exhaust product deposition on scientific
instrument surfaces which are maintained at temperatures well below the 200K
limit previously discussed. The optical surfaces of infrared sensors, for
example, are particularly susceptible to performance degradation through in-
creased absorption and scattering of incident radiation by cryodeposits. Since
the highly polished mirrors of these instruments may be maintained below .
20°K (Ref. 13) to reduce the effects of internally generated noise, the cryo-
trapping of any incident rocket exhaust plume gases is almost a certainty. As
the gases from a monopropellant rocket engine will not, in most cases, be
trapped by the higher temperature surfaces of the spacecraft, the sensor may
receive reflected contaminants from any surface within its field of view. It
thus becomes necessary to define both the rocket exhaust plume flow field and
the expected quantity and specles of any suspected contaminants.

7



The primary exhaust constituents from the decomposition of hydrazine are
nitrogen, hydrogen, and ammonia. The relative concentration of these products
depends upon the amount of ammonia which dissociates into hydrogen and nitrogen,
an endothermic reaction which 1is controlled primarily by catalyst bed design.
The hydrogen will probably never constitute a hazard to sensitive spacecraft
surfaces; the nitrogen will condense only on the lowest temperature optics
@:76 K) and at that will probably present minimal optical disturbances (Ref. 14)
compared to the other contaminants. Ammonia will probably begin to accumulate
on surfaces at around 70°K (Ref. 15) in a space environment.

In addition to these products, undecomposed hydrazine may be expelled from
the engine. Random amounts of gaseous hydrazine have been detected at various
pulsing duty cycles and during steady state operation, even after the thruster
has achieved thermal equilibrium (Refs. 16-19), The ejection of undecomposed
hydrazine is particularly likely during a vacuum cold start with low temperature
propellant, which may in fact cause liquid to be expelled from the engine. The
discharge of undecomposed hydrazine will become much worse if the thruster is
exhibiting the performance loss commmonly referred to as "washout." This
phenomena may occur during either steady state or pulse mode operation; decom-
position in the catalytic reactor becomes erratic and may cease altogether,
allowing unreacted propellant to leave the nozzle (Ref. 20). Frozen hydrazine
has been reported hanging from the thruster nozzle after pulse mode operation
has produced such a state (Ref. 16},

The impurities in monopropellant grade hydrazine may also be a source of
spacecraft contamination. Hydrazine purchased per MIL-P-26536C, Amendment 1,
may contain up to 1% water and 0.5% aniline (C H NH ) by weight as the major
impurities. The greater bulk of the water apparentiy survives passage through

the reaction zone without chemically combining with the other products to any
great extent (Ref, 16); however, the formation of hydrazine hydrate (H NNH H O)
has been suspected (Ref. 21)., The aniline, an impurity introduced dur%
manufacture of the propellant, may present speclal contamination problems for
some scientific experiments. However, the aniline can be removed by special
processing (Ref. 22), and the purified propellant offers significant performance
advantages, including, apparently, the elimination of the aforementioned "wash-
out" phenomenon (Refs. 23,24).

The primary contaminants generated by monopropellant hydrazine thruster
operation thus appear to be undecomposed hydrazine, water, and aniline, since
these constituents of the exhaust producgs can be expected to adhere to space-
craft surfaces at temperatures above 100 K., Ammonia will begin to become an
offender at temperatures slightly below this, and nitrogen will present problems
only at the most extreme low temperature limits.

This report describes a series of tests to characterize the contamination
potential of a low thrust monopropellant hydrazine thruster to surfaces above
100 K. This is an extension of previous investigations which mapped the plume
flow field and measured the contamination which would be expected on surfaces at

223°%k to 323% (Ref. 25).

The Hamilton Standard Division of United Technologies, Inc. loaned a 0.89N
thrust engine to the Alr Force Rocket Propulsion Laboratory (AFRPL), and thence

8



to the Jet Propulsion Laboratory (JPL) for the present series of tests. The
engine was installed in an ultrahigh vacuum molecular sink facility and fired
vertically downward 3uch that the exhaust plume would impinge on five quartz
crystal microbalances (QCMs). The QCMs were located approximately 1.1 m below
the nozzle exit plane at angles of approximately Oo,_iIS » and 130" with respect
to the nozzle centerline. The QCM temperatures were controlled such that mass
adhering to the crystal surface at temperatures of from 106°K to 256°K could be

measured,

Thruster duty cycles of 25 ms on/5 seconds off,100 ms on/10 seconds off,
and 200 ms on/20 seconds off were investigated. The effect of water in the
hydrazine was assessed by adding water to the propellant during one series of
tests. The change in contaminant production with thruster 1ife was assessed by
subjecting the thruster to_a 100,000 pulse aging sequence and comparing the
before and after contaminant deposition rates.

ITI. EXPERIMENTAL FACILITY
A, Molecular Sink Vacuum Chamber

One of the major difficulties associated with the study of the far field
rocket exhaust plume is the sensitivity of any mass flux measurement to gas
recirculation effects within the space simulation facility. The JPL molecular
sink (MOLSINK) used for the present study is an ultrahigh vacuum chamber which
is capable of cryopumping injected gases at a very high rate, thus reducing the
molecular scatter to a minimum.

The MOLSINK facility consists of a vacuum chamber and associated cryogenic
and vacuum systems, as shown in Figure 1. The chamber itself, shown in
Figure 2, encloses an inner liner and molecular trap. The inner liner is filled
with liquid nitrogen and acts as a massive heat sink. The nitrogen is supplied
to the Inner liner from a central tank and is then vented to the atmosphere,
The molecular trap, which is the innermost chamber, is a sphere approximately
three meters in diameter. The aluminum walls are wedge-shaped, resembling an
anechoic chamber, with a totgl surface area of 186 square meters. These walls
are maintained at 1(°K to 15 K by gégeOUS helium which circulates within a
manifold of tubes at approximately 7 K. The helium is kept at this temperature
by a refrigerator located adjacent to the chamber. The chamber walls are also
coated with titanium, which acts as a "gegter” material to trap any helium and
hydrogen that is not cryopumped by the 10 K surfaces.

As can be seen in Figure 3, the MOLSINK chamber has two doors. The pro-
pulsion system lines and thermal control elements come through the upper door,
which is a relatively small surface located in the distant backflow region of
the rocket plume. The bottom door provides routine access to the chamber
between tests; it is covered with a copper cone cooled with liquid nitrogen or
liquid helium., The bottom door temperature can thus be controlled and the
deposited frost maintained as a thin film by collecting any excess in a "cold

bucket" around the cone rim.

The amount of helium and hydrogen that can be pumped 1is greatly increased
by coating the walls with a frost of gas that has a relatively high melting

9
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PROPULSION SYSTEM
AND THERMAL CONTROLS

L MOLSINK INTERFACE AND UPPER D
FUEL LINES
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Figure 3. General Arrangement of
Systems in the MOLSINK
Facility (Not to Scale)
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point; the frost then cryosorbs helium and hydrogen effectively. Carbon dioxide
is used routinely for this purpose in MOLSINK operations. Since only a single
molecular layer or so of hydrogen is cryosorbed by a frost layer, a continuous
bleeding of carbon dioxide Is sometimes necessary when firing a monopropellant
hydrazine thruster. ’

The CO, injection system consists of a nozzle-plenum assembly located near
the top of the MOLSINK chamber; it enters through the upper door. The flow of
CO, is controlled by a solenoid valve operated by a relay which is in turn
enérgized by a pulse generator. The pulse generator is so synchronized as to be
out of phase with the thruster valve driver assembly. The CO, solenoid valve
can also be operated manually. In order to minimize undesireg contamination
being introduced into the chamber, the CO, is supplied from a bottle and fil-
tered first by a 20um and then by a lum filter.

The carbon dioxide should condense as a solid at approximately 85°K
(extrgaolation of data from Ref. 26) for a nominal MOLSINK operating pressure
of 10 Pa (7.5 x 10-7 torr). Since the minimum QCM temperature used for the
present experiment was 106°K, the influence of the CO, injection on the QCM
data was expected to be negligible, However, a separate test was conducted
to measure the contribution of the CO, to the mass deposition rate at a crys-
tal temperature of 144°K. The measured mass accretion due to CO, was found
to be two orders of magnitude less than that due to thruster fit%ng and no
attempt was made to correct the data for this effect. No evidence of COp
accretion at the higher crystal temperatures was observed during operation of
the CO, injection system prior to tests at these temperatures, and the sole
run at a crystal temperature of,loﬁfxfwggmggpdpgtggfwithogt”QQz injection.

The cryosorption rates for hydrogen and helium are highly dependent upon
the wall temperature, and any process that will affect the wall temperature will
result in a variation of chamber background pressure once these gases have
been introduced into the chamber. During MOLSINK operation, a cryogenic envir-
onment exists within the chamber. Thermal control of such items as propellant
lines and valves is necessary to prevent freezing of the propellants. These
warm surfaces are protected from radiation losses by appropriate shielding,
while the heat conduction losses are negligible if good insulation is used and
low pressure is maintained in the chamber. If for some reason the hydrogen
sorption onto the walls is diminished, any additional hydrogen injected into
the chamber will reduce the vacuum, resulting in increased heat conduction
losses. This causes additional warming of the walls which results in more
hydrogen desorption. This phenomenon exhibits exponential growth which results
in the desorption of hydrogen from the walls within a matter of seconds; it is
hereafter referred to as the "avalanche" effect.

Additional information concerning the design of the MOLSINK facility may
be found in References 27 and 28.

B. Microbalance Instrumentation

Five quartz crystal microbalances (QCMs) were used to measure the contam-
inant mass deposition from the rocket éxhaust plume.

13



The heart of the QCM is a quartz crystal, the pilezoelectric effect of which
is used to stabilize the resonant frequency of an electronic oscillator. The
resulting resonant frequency depends upon several parameters, but if the oscil-
lator circuilt constants and polarization voltages are fixed, the specific modes
of vibration will depend only upon the orientation of the cut plane with
respect to the crystal axes, For a given cut angle, the precise resonant
frequency will depend upon the temperature and the amount of mass which is
deposited on the crystal surface, If the crystal experilences a variation in
temperature AT and a mass variation Am, the resulting frequency shift Af can
be expressed as:

Af = C_Am + C AT
m T

where Cm and CT are the mass and temperature coefficients, respectively, of the
crystal.

In general, both C_ and C_ are functions of temperature and cut angle.
However, for a considergble change in temperature and cut angle, the mass
coefficlent does not vary by more than 5% and can be assumed a constant. If a
cut angle 1s chosen such that C_ can be set to zero over some temperature range,
then the frequency shift is proportional only to the mass deposited on the
crystal surface, and the crystal can be used as a delicate microbalance for
measuring small masses.

The crystals selected for use in the present experiment were AT cuts
(Ref. 29) which vibrate in the thickness shear mode at approximately 5 MHz. An
illustration of the crystal, showing the electrodes and the mode of vibration,
is presented in giguréré. The precise AT cut for crystals H, I, K, and L (see
Figure 3) was 35 10', while the cut for crystal J was 40 28'. The 40°28' cut
hag a small temperature coefficient at temperatures of 10°K to 125°K, while the
35°10' cut has a minimum temperature coefficient over the range 125K and above,
By proper QCM design, the effects of temperature can be reduced still further.
Bartera (Ref. 30 ) has produced a design which is simple yet provides a very
efficient temperature compensation. This arrangement is shown in Figure 5. A
doublet crystal plate is cut and polished; gold electrodes are deposited on one
side, as shown in Figure 6, while a common rectangular electrode is used on the
other side. If the crystal is driven at low voltage, each half of the doublet
will oscillate independently. By protecting one half from mass deposit with a
screen which is optically thin to the radiation environment, the beat frequency
between the two halves, which have achieved the same equilibrium temperature,
can be easily correlated with the mass deposited on one half. The temperature
compensation thus achieved renders negligible the effect of temperature on the
QCMs over the range of temperature covered in the present experiment. The
change in beat frequency AF can thus be related to deposited mass by the
simple relation:

Am = (1/Cm) AF

A derivation of the above relation and Cp is given in Appendix A.

The design of a QCM is very dependent upon the intended application,
including the environment and operating conditions under which it will be
required to function. When investigating rocket exhaust contaminant distribu-
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tion, one is interested in setting the QCM sensing surface at a constant tem-
perature within a specified range. Since the experimenter does not necessarily
know in advance the condensation temperature of all the contaminants from a
monopropellant hydrazine thruster, the QCM must have the capability of operating
over a temperature range from NH, condensation to room temperature. In order to
selectively sample the contaminants by cryotrapping on the crystal surface, the
QCM 1is exposed to the plume and its frequency output is monitored while it is
operated at various constant temperatures.

Each QCM unit was equipped with heaters which were controlled by a copper-
constantan thermocouple located in the proximity of one of the heaters, while
the crystal temperature was monitored by a similar thermocouple placed on one
corner of the crystal., The heater-controlling thermocouples of the variable
temperature QCMs dynamically maintained the temperature of the units. The
actual setting of the control point for these heaters was determined by the
thermocouple located on the crystal.

The crystal itself is mounted to an aluminum block by a set of "hairbrush"
gold wires, as shown in Figure 7, which are attached to the common electrode by
a high thermal conductivity, low outgassing silver epoxy. The gold wires pro-
vide a good thermally conducting path between crystal and block while precluding
the development of any potentially damaging thermal stresses within the crystal.
Two gold wires connect the crystal electrodes to two heat sinks, which are in
turn connected to the electronics package. The unit is covered with a Teflon
block collimator provided with two circular apertures, one of which is covered
with a transparent piece of Mylar. A photograph showing the crystal doublet,
heaters, and collimator is presented as Figure 8, A view of the QCMs from the
position of the thruster nozzle (looking downward) is given in Figure 9. All
the materials used in QCM construction, mounting, and wiring were selected to
minimize outgassing rates in vacuum. The electronics and heater wiring from
all the QCM units was extracted through the bottom MOLSINK door and routed to

the data acquisition system.

c. Propulsion System

An REA 10-18 thruster/valve assembly was loaned for the present experi-
ment by Hamilton Standard Division, United Technologies, Inc. The nominal

characteristics of this thruster are summarized in Table 1I.

TABLE I. ©Nominal Characteristics of Hamilton Standard REA 10-18 Thruster

Steady State Thrust 0.89N (0.2 1bf)

Steady State Inlet Pressure 1.62 x 106 Pa (235 psia)
Steady State Chamber Pressure 1l.14 x 106 Pa (165 psia)
Catalyst Shell 405

Nozzle Area Ratio 55:1

Valve Manufacturer Wright

17



U WOO 2anjeasdwia] d[qeliep ® jo wesdeiq d1BRWIYIS "L sandiyg

(rut 62°7) L
w2 7/°G

(rur 62°1)
w3 8y 'E

SOINO¥LDI

AD0nw

ONILNNOW l/
N

™~

(*u1 6£°0)
wo 6%

IWNOIOWEIHL

3012INNOD #\

*20M \
7

ONIINNOW
IVISAED Sy

NN

Vi

\\ A0 WVISAED

ok w\\\\\%\\\e
8t &

NANNN

ONIINNOW
HSN¥E WVH I\

1318n0a I\
IVISAYD

O FdNODOWEIHL
IVISA¥D

C

300315913
NOWWOD I\

NN

T

wrgt] wWopgTZ  wo

]

(*urgzr0) Cwotl) Cwyt)

S'E

18



poAoWay J0ILWIIOD WOTRL OY) WM I1UA WDD ® 3o MIA Y

oAy

b
I
*
L

‘g 2andig

19



I91SNIYJ, 2Yj WOI J PamdIp S SINDD

N,

SREIET E<z<58 W3b:,

"6 2xndrg

SN

ST
S UNawiEda
“SIHL NI G350 LON),
7 SWOD DINIIOAYD

20

"



The thruster had been subjected to 2353 pulse mode firings and 292 seconds
of steady state firing prior to installation and testing in the MOLSINK facil-
ity. The engine was located at the axis of the chamber with the nozzle exit
64.67 cm from the top of the chamber as shown in Figure 10. It was mounted on a
vertical bracket supported by a horizontal bar, and visually aligned to fire
vertically downward towards the five QCMs. The propellant lines were passed
through the upper door and thence to the propellant feed module. A photograph
of the thruster as installed in the MOLSINK is presented as Figure 11,

The thruster/valve assembly and propellant line were inside the cryogenic
environment of the chamber and thus required protection from freezing. This
protection was afforded by strip and spot heaters and radiation shielding. The
propellant line temperature was monitored by a series of thermocouples distrib-
uted along the line. These thermocouples controlled several low outgassing
Kapton film heaters (manufactured by Electrofilm, Inc.) which were wrapped
around an aluminum tube as shown in Figure 12, The thermocouple cabling, hydra-
zine propellant line, and a gaseous nitrogen purge line shared the controlled
environment within the aluminum tube.

Maximum thermal insulation was utilized for all components to minimize
heat leaks to the MOLSINK chamber walls. The aluminum tube and thruster valve
were covered by aluminum foil in order to prevent excessive radiation losses.

The engine and valve were instrumented with several thermocouples and a
coiled coaxial electrical heater. This arrangement provided thermal control of
the engine catalyst bed and allowed the throat and catalyst bed temperature to
be monitored. Heater wiring and solenoid valve cabling were collected between
the aluminum tubing and the aluminum foil wrapping. They were extracted from
the chamber by feed-throughs located at the top door of the MOLSINK.

The nominal temperatures of the thermally controlled components are given
in Table II.

TABLE II. Nominal Temperatures of Thermally Controlled Components

COMPONENT TEMPERATURE

Fuel Lines 293-303°K (67-85°F)
Filter 292-303°K (67-85°F)
Solenoid Valve 293-303°K (67-85°F)
Catalyst Bed 480°K (400°F)

The propellant feed module was located at the top of the MOLSINK chamber
outside the upper door. The module included the gaseous nitrogen purge system,
the hydrazine propellant supply tank, a piston flow meter, and instrumentation
for monitoring the propellant temperature and pressure. The piston flowmeter
was calibrated and incorporated into the propulsion module so that the mass
deposition rate as measured by the QCMs could be related to the propellant
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Figure 10. QCM Orientation and Thruster Position in MOLSINK Chamber
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flowrate through the thruster. A schematic diagram of the propulsion module
and those components that were located within the MOLSINK chamber is shown in
Figure 13. The propellant was introduced to the thruster through valve VFL-1,
filling both lines with hydrazine from the solenoid valve to valve VPG-1l. The
line containing VPG-1 is the gaseous nitrogen purge.

Operation of the propellant system was commanded by remote control from -
the 1lower floor of the MOLSINK facility after the propellant tank had been
preassurized. A variable pulse width and variable pulse separation sequence
timer system was used to control thruster firing.

The thruster chamber pressure tap was closed off during the contamination
testing and its volume was minimized by positioning a needle in the line cavity.
During the aging sequence only, a Statham Model PA856 pressure transducer and
approximately four inches of 1/16 inch outside diameter connecting tubing were
attached to the tap for the purpose of monitoring engine performance.

D. Data Acquisition System

Two separate data acquisition systems were used for this experiment. The
primary system was a digital data acquisition system which swept a total of 59
channels and printed out a permanent record of all readings plus the time. The
majority of these channels was dedicated to the instrumentation which provided
thermal control for the prevention of freezing of the components within the
MOLSINK chamber; these will not be further discussed. Fourteen of the sampled
channels have a direct bearing on the experiment and thruster performance.

These channels include the five QCM frequencies, the five crystal temperatures,
propellant inlet pressure, propellant inlet temperature, position of the linear
variable potentiometer of the piston flowmeter, and thruster chamber temperature.

Digital sampling intervals of 88 and 134 seconds were utilized, which cor-
respond to anywhere from 4 to 26 pulses fired between samples, depending upon
the duty cycle.

The printed output from the primary data system was punched onto computer
cards and used exclusively for the subsequent data reduction and analysis.

The signals from each of the QCMs were alsc split and routed through an
oscilloscope and a digital counter, and then through a digital-to-analog con-
verter to strip charts so that a real time evaluation of the mass deposition
rate data could be made. The crystal and critical thruster temperatures were
also displayed in real time on strip chart recorders, as was the background
vacuum pressure in the MOLSINK chamber.

E. Facility Operation

All thermal controls were set to nominal temperatures, anglthe chamber doors
were closed. A mechanical pump reduced the chagger to 1;93x10 Pa (10 torr),
and a diffusion pump brought it down to 1.33x10 ~ Pa (10 ~ torr). After leak
checking, 1liquid nitrogen was introduced into the inner liner of tge chamber.
That brought the temperature of the liner and molecular trap to 80K at the end
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of 26 hours. At this point, with the pressure still at 1.33x10-3 Pa (10-5torr),
the helium refrigerator was started. At the end of eight hours, the molecular
trap tempergture had dropped to 10 K, and the chamber pressure had reached a low
of 1.33x10 ° Pa (10 torr). At this point the facility was at its nominal
high-vacuum operating mode, and the calibration and test procedures were initi-
ated. The systems were checked by flowing gases through the auxiliary CO
injection system nozzle, and several runs on the data system were conducteéd
until all systems were debugged, coordinated, and properly interfaced.

I11. TEST DESCRIPTION

The matrix of thruster operating conditions and crystal temperatures for
the tests reported herein are given in Table III. The nominal thruster propel-
lant inlet pressure for all test runs was 790 kPa (100 psig), which corresponds
to a steady state thrust of 0.4N (0.09 1lbf). The initial catalyst bed tempera-
ture was 480°K (400°F), and the propellant inlet temperature was approximately
300°K (80°F).

o Runs %, 2, and 3°represent baseline testing at crystal temperatures of
200°K, 172°K, and 144 K. The baseline thruster duty cycle was 100 ms on, 10

seconds off,

After run 3 the failure of the catalyst bed heater was discovered. It was
replaced by a coiled resistance heater which required removing and discarding
the thruster heatoshieldb Though the initial catalyst bed temperature could be
maintained at 480 K (400 F), the additional radiative heat loss resulted in
approximately a 45°K (SOOF) reduction in the equilibrium temperature achieved
in the catalyst bed at the baseline duty cycle.

Tests 4 and 5 were high rate pulse trains at a thrusger duty cycle of
25 ms on and 5 seconds off at crystal temperatures of 172°K and 144 K.

Runs 6 through 10 were low rate pulse trains at a duty cycle of 200 ms on
and 20 seconds off. Runs 6 and 7 were conducted for the purpose of measuring
the masg deposition rate at this duty cycle for crystal temperatures of 172K
and 144 K. Runs 8, 9, and 10 represent an attempt to characterize the contami-
nant production of the engine for the first pulses of a train, during which time
the catalyst bed temperature is rising towards its equilibrium value. During
runs 7, 8, 9, and 10 data were acquired digitally after approximately every
fourth thruster pulse. ' o

Run 11 is a rebaseline test at a crystal temperatyre of 144°K. Run 12 is
a baseline measurement at a crystal temperature of 106 K.

The hydrazine propellant used in this experiment was purchased per MIL-P-
26536C, Amendment 1. An assay of this propellant determined that it contained
0.71% HZO by weight. For tests 13 and 14 the amount of water in the propellant
was incfeased to 1.87% in order to assess the difference this would make on the
contamination measurements at crystal temperatures of 172 K and 144 K.

At the conclusion of the water addition tests, the propulsion system was
purged and propellant from the original gtock was loaded. With the MOLSINK at
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Table III. Test Sequence

Duty Cumulative
Cycle Crystal Pulses At
Run (ms on/ Temperature Pulses Beginning Purpose of
__Number sec off) (QK)‘ Per Rum of Test Test
1 100/10 200. 1000. 3353.
Baseline
2 100/10 172. 1000. 4353. !
Testing
3 100/10 144, 334, 5353.
4 25/5 172, 2222, 6682. High Rate
5 25/5 144, 2059. 13687. Pulse Train
6 200/20 172. 410. 17951, )
7 200/20 144, 60. 19441,
Low Rate
8 200/20 144, 60. 19860. g
Pulse Train
9 200/20 144, 60. 19920.
10 200/20 144, 60. 19980. y,
11 100/10 144, 750. 23780. Baseline
12 100/10 106. 302. 26349. Testing
13 100/10 144, 782. 27785. Water
14 100/10 172, 767. 28927, Addition

Aging Sequence (See Table IV)

15 100/10 172, 940. 131011.
Baseline
16 100/10 200. 990, 132221.
Testing
17 100/10 144, 1024, 134001.
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1.33x10—l Pa (10 3 torr) and at ambient temperature, the thruster was subjected
to an aging sequence of 100,275 pulses; these were accrued by repeating three
times the test sequence shown in Table IV. At the conclusion of the aging se-
quence, the MOLSINK was returned to its high-vacuum, low temperatuse operating
condition and baseline tests at crystal temperatures of 200K, 172°K, and 144K
were conducted to ascertain whether or not the effects of thruster life had an
influence on the contaminant production. These baseline tests were runs 15, 16,
and 17.

An examination of the cumulative pulses colummn of Table III will reveal
that much testing took place that ig not reported here, This testing included
runs at crystalotemperatures of 256 K, for which no mass deposition was recorded,
and runs at 228 K, for which either no mass deposition was recorded or the
results were uninterpretable due to scatter. This will be further discussed
in Section IV.

With the exception of runs 8, 9, and 10, all the tests reported here were of
several thousand seconds duration. As has been previously explained, these
three tests were an attempt to measure a transient phenomenon and were thus of
only approximately 1200 seconds duration. Many additional short tests of this
nature were conducted; they were however, inadvertently conducted at the lower
digital sampling rate, allowing 133 seconds to elapse between readings. They
were also primarily conducted at crystal temperatures of 172°K in an attempt
to detect undecomposed hydrazine without condensing any ammonia. Data at this
and higher temperatures were very difficult to interpret due to scatter in the
very low measured mass deposition rates and required long test rums to estab-
lish the frequency trend.

A considerable effort was put forth in an attempt to extract useful results
from the short tests, including a least squaresfitting of both linear and cubic
relations to the data (see Appendix B). Unfortunately, use of the QCM technique
requires that an evaluation of the time rate of change of crystal frequency
be made, and the differentiation process which must necessarily be applied to the
data tends to exaggerate uncertainties, Because no consistent results could be
obtained from the few data points of the short runs, and since the elapsed time
between data samples was so great as to miss most of the transient phenomenon
anyway, these runs were discarded and will not be subject to further analysis or

discussion.
IV. RESULTS

The results from each of the tests described in Section IIT are summarized
in Table V. The mass deposition rate recorded by each erystal has been con-
verted to mass deposition rate per unit solid angle, gm/sec/steradian, so that
a comparison among the five crystals can be more easily made. Where a value
is not given, the data indicated a mass deposition rate either too low to be
reliably determined or the data scatter was such as to render the result uninter-
pretable. As described in Section III, runs 8, 9, and 10 were short runs for
the purpose of characterizing the contaminants produced by the thruster during
the first few pulses. The mass deposition rates shown in Table V for these
three runs were obtained from a curvefit tc the data and are representative of

the contamination production at the beginning of the pulse train.
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Table IV. Thruster Aging Sequence
(Repeated Three Times)

Duty Cycle Total
(Seconds) Number of Time Elapsed On-Time
on of f Pulses (Seconds) (Seconds)
0.020 120 50 6001.0 1.00
0.035 120 50 6001,75 1.75
0.050 120 50 6002.50 2.50
0.100 120 50 6005.00 5.00
0,250 300 5 1501.25 1.25
0.015 15 100 1501.50 1.50
0.500 120 10 1205.00 5.00
1.0 120 10 1210.00 10.00
0.125 12.375 1000 12500.00 ' 125.00
0.04 1.16 5000 6000,00 200.00
0.04 0.40 7000 3080.00 280.00
1.0 10.0 100 1100.00 100.00
0.10 0.900 6000 6000.00 600,00
0.075 0.525 6000 3600.00 450.00

0.090 0.100 7000 1330.00 620.0

0.020 0.020 1000 40,00 20.0

Subtotal: 33425 63078 2433

Total for Aging Sequence: 100275~ 18923 7299
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The propellant mass flowrate 1s gilven for all runs except 11, 12, and 13,
for which the piston flowmeter was not used. The equilibrium catalyst bed
temperature is shown for all runs except the short transients, 8, 9, and 10.

A. Plume Shape and Data Interpretation

The contamination results from all runs conducted prior to the aging se-
quence, excluding runs 8, 9, 10, 12, 13, and 14, are plotted in non-dimension-
alized fashion in Figure 14, The mass flux per unit solid angle at each crystal
location is divided by the value obtained from crystal J. The results from QeM J
were almost always easier to interpret due to the higher mass flux at this
location, and this QCM performed repeatedly well at all temperatures. This
method of presentation thus allows a comparison to be made among the five QCM

readings.

Several interesting observations may be made from an examination of Figure
14. The scatter in the data taken at a QCM temperature of 172°K is indicative
of the difficulty that was encountered in evaluating the slope of the frequency-
time curve at this and higherotemperatures. This 1s further demonstrated by the
fact that only ome run at 200 K provided sufficiently consistent results to be
interpretable as having evidenced any mass deposition atoall prior to the aging
sequence. Several times after the completion of the 172 K runs a desorption of
mass from the crystals could be seen, and failure to reach a deposition/desorp-
tion equilibrium in a uniform manner on all the crystals during a run is pos-
sibly responsible for most of the scatter at crystal temperatures of 172°K and

200°K.

An additional phenomenon which probably contributed to the scatter at all
temperatures may beoseen by examining the results from runs conducted at crystal
temperatures of 144 K. The frequency-time data at this temperature were very
repeatable, and the data were almost always easily and reliably interpretable,
The scatter at thils temperature is primarily due to a skewness of the rocket
exhaust plume, with greater mass flux being recorded on QCMs H and I than on
QCMs K and L. Note that the mass flux at crystal H is always higher than that
at crystal L, even though L is located closer to the nozzle centerline. For
two of the five runs plotted in Figure l4c, QCM L recorded no mass deposition.

A similar comparison of I and K may also be made~-in fact QCM I twice recorded
higher mass flux than the centerline QCM J. Though the plume was always unsym- ,
metrical to some extent, the amount varied from run to run and no correlation
with thruster geometric features or alignment is evident.

The solid line drawn tbrough the data on Figure l4c is based upon the plume
expansion approximation of Hill and Draper (Ref. 31). This formulation is based
upon inviscid plume expansion correlations and will be assumed to be applicable
for the core flow measurements considered here. Their relationship takes the

form: 2 2
dm dm . e-é (l-cos 8)
aa dan =0

a4
where Eg) is the mass flux per unit solid angle ? at angle 6 from the nozzle

8 dm

centerline, a0 0=0 is the mass flux per unit solid angle at the centerlire,
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and 6 1is a plume expansion parameter. Measurements from QCMs H, I, and J for
all runs conducted at a crystal temperature of 144°K were fit to the above
relationship to determine the plume expansion parameter § . Only the measure-
ments from H, I, and J were used so that the maximum plume spreading would be
achieved, thus yielding a reasonably conservative value of § for off-axis
contamination assessment. A value of 8= 9.59 provides the best fit to the data
in the least squares sense and was used to plot the curve shown in Figure l4e.

Hill and Draper define§ by the following relationship:
-1

5 = [\Iw_-(l—cf/cfm)]

where C. is the actual thrust coefficlent and C is the maximum theoretical
thrust coefficient. The ratio C /C can be com%uted based upon isentroplc,
ideal gas relations if the nozzle exgansion area ratio (55:1) the nozzle
divergence half angle (lSo), and the ratio of specific heats, Y, are known.
Taking & = 9.59 and backing out the ratio of specific heats yields a value

of Y= 1.41 for the present thruster, This is the value of ¥ which would be
obtained at a gas temperature of 167°K for 65.5% ammonia dissociation. This
would seem to indicate that for monopropellant plume expansion calculations
using the Hill and Draper approximation the ratio of specific heats should be
evaluated at a temperature well below that of the adiabatic reaction temperature
(which is often used) and preferably near the nozzle exit temperature., Evalu-
ation of ¥ at the higher temperature will, however, predict more plume spreading
and thus may be more conservative for some contamination studies.

The mass flux per unit solid angle at the nozzle centerline can be calcu-
lated using the simple relationship:

dmy. I 1;3/2
d(7)6= 0 B

where B, is the total propellant mass flowrate to the thruster. In subsequent
sections it will be desirable to remove the effects of propellant flowrate from
the results. This will be done by dividing the measured centerline (QCM J)
contamination by 8a_/ w /2, where §= 9.59, and m_ will be as measured by the
piston flowmeter fof the particular run involved. "The result will be called the
normalized mass deposition rate and can be interpreted as the fraction of the
total mass flux at the centerline which is deposited on the crystal surface.

B. Contaminant Capture as a Function of Surface Temperature

The mass deposition rate per unit solid angle for the centerline QCM J is
plotted as a function of crystal temperature in Figure 15. All runs are included
in this plot except the short transieant runs 8, 9, and 10.

At crystal temperatures of 172°K and 200°K a mass deposition rate of ap-
proximately 107" gm/sec/sr is indicated. As previously discussed, desorption
from the crystals was noted at the conclusion (i.e., after theothruster was
stopped) of several of the rums at crystal temperatures of 172K and higher,
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For a crystal temperature of 144°K the mass deposition rate is over an order
of magnitude greater than that recorded at 172°K. This abrupt increase can be
attributed to the capture of some component of the exhaust products which does
not remain on the crystal at, 172 K. The capture of yet another species is indi-
cated by the increase to 10~ gm/sec/sr of deposited mass at 106°K.

By using the analytical exhaust plume expansion correlation referred to
earlier, it is possible to calculate the total mass flux per unit solid angle
at the plume centerline. If the measured amount of centerline contamination
1s divided by the expected total centerline mass flux, the percent of the total
centerline mass flux which is deposited on the crystals can be approximated.
This percentage is shown in Figure 15 for the baseline duty cycle at crystal
temperatures of 106°K, 144°K, and 172°K.

An assay of the propellant, prior to the addition of distilled water for
runs 13 and 14, revealed that it contained 0.71% water and 0.55% aniline by
mass. Moynihan has detected various amounts of methane in monopropellant
thruster exhaust gas samples (Refs. 16,17). This methane most likely results
from the breakdown of the aniline within the thruster catalyst bed. Since
methane has a normal boiling point of 111. 5 K (Ref. 26). it is unlikely that
it contributes to the contamination shown in Figure 15.

In tests involving a Hamilton Standard REA 10-12 engine of nominally 0.44N
(0.1 1bf) thrust, Moynihan (Ref, 16) has also demonstrated that the amount of
water detected in the exhaust gas sample agrees well with the amount of water
in the propellant assay, thus suggesting that the water survives its passages
through the catalyst bed.

Prior to loaning the REA 10-18 thruster to AFRPL for the present experiment,
Hamilton Standard obtained an exhaust gas sample while firing the engine in a
60 second steady state run, The sample was taken at an inlet pressure of 1344
kPa (195 psia) with an unknown propellant composition. The sample was delivered
to JPL with the thruster and was subsequently analyzed manometrically and with
a mass spectrometer. Hydrazine was detected using a colorimetric analysis. No
attempt was made to determine the amount of water or hydrocarbon in the gas
sample, The result of this analysis 1s given in Table VI, where water and
aniline have been shown in the same proportion as determined from the assay of
the propellant used in the present contamination experiment. Also shown in
Table VI are the condensation temperaturez of each of the constituents for a
nominal MOLSINK operating pressure of 10”*Pa (7.5x10-7 torr).

Moynihan detected as much as 1.67% by mass of unreacted hydrazine at a pulse-
width of 1 second; it is thus reasonable to expect that a greater amount of un-
reacted hydrazine will appear in the exhaust plume at a duty cycle of 100 ms on
and 10 seconds off than was evident during the steady state run for which the
sample of Table VI is characteristiec,

By comparing the relative orders of magnitude of the contaminants shown in
Figure 15 with the results from gable VI, it may be inferred that the prepon-
derance of deposited mass at 106 K is ammonia, while the bulk of the contaminant
at 144°K is probably water and some hydrazine. While the aniline might be
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expected to show up at a crystal temperature of 172°K, it clearly does not show
up in proportion to its availability in the propellant, thus providing an
additional argument for its decomposition within the catalyst bed.

TABLE VI. Gas Sample Constituents and Capture Temperature

Mass in Sample M?ss Conggnsation Temperature éb
Constituent (Grams) (%) 10 ~ Pa MOLSINK Pressure

H, 2.8 x 1072 8.1 4%k

N, 2.3 x 107¢ 66.5 26°K

NH, 8.37 x 1072 24,2 101°K

H,0 (b) _ 0.71 159°K

NH, o 40 x 10 0.012 165°K (Ref. 15)
Aniline -— 0.55 190°K

Percent Ammonia Dissociation (c) = 65.5%

(a) Extrapolated from the data of Reference 26 except as shown.

(b) Assumed to be the same as found in the propellant.

(c¢) Calculated using the mole fraction ratio of HZ/NH3 to account for any dis-
solved N2 pressurant in the propellant.

Tests 13 and 14 were conducted using the baseline duty cycle and propellant
with 1.8% water. The results, for crystal temperatures of 144°K and 172°K, are
shown in Figure 16. The data for the baseline runs 2, 3, and 11 are also shown
for comparison.

The propellant with 1.8% water produces a uniform increase in the measured
contamination over that of the propellant with 0.71% water. This increase is
evident at all QCM locations where data is gvailable gor comparison, and is
obvious at both crystal temperatures of 144 K and 172K, even despite the data

scatter at 1720K.

The plume asymmetry of run 11 is especially obvious in Figure 16. This is
particularly unfortunate since one would like to compare runs 11 and 13 as they
were both conducted at about the same state of thruster life (see Table III).

By assuming 1) that the same proportion of the water in the propellant remains

on the crystals for both the 0.71% and 1.8% cases, and 2) that the remaining
contaminants are unaffected by the water addition, a calculation of the percent
contamination due to the water in the propellant may be made for each crystal.
For run 11, the results indicate 14-48% water contamination at a crystal tempera-
ture of 144°K., The large variation is directly attributable to the skewness of
the run 11 plume, and it is felt that the combined effects of skewness and thrus-
ter life render these figures ambiguous at best. A similar analysis was performed
for the runs conducted at a crystal temperature of 172 K. Values of 26-70% water
were obtained for the contamination produced by propellant with 0.71% water, and
the data scatter is so great that little confidence can be given these figures
either. It is important to regognize, however, that the water does in fact show
up as a contamination on a 172 K surface, even though it may subsequently vapo-
rize if exposure to a simulated space environment is continued.
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Esenwein (Ref. 21) reports a variation of from 1 to 100 ygm/cm2 in the
amount of hydrazine or hydrazine compounds remaining on different surfaces at
ambient temperatures after prolonged exposure to a simulated space environment;
he offers hydrazine hydrate, H NNH H, O, as a candidate residue. Chirivella
(Ref. 25) has also reported traces o% contaminants remaining on QCM crystal

surfaces at room temperature after monopropellant thruster testing similar to
that conducted for this study. Brill (Ref. 19) has witnessed snow-white de-
posits, believed to be raw hydrazine, on a surface exposed to a hydrazine
thruster plume. These deposits subsequently vaporized leaving a slight film on
the sample. The relatively uigiscule amount of contaminant shown in Figure 15
at crystal temperatures of 172 K and above is thus most likely to consist of:

1) small amounts of water and hydrazine, the bulk of which probably revaporize
after removal of the incident flux; 2) hydrazine compounds, which will remain on
the surface up to room temperature; 3) any undecomposed aniline; and 4) other
impurities which may have been in the propellant, including trace metals and

particulates.

The tests conducted at crystal temperatures of 228K and 256°K detected
no mass accretion for run lengths of several thousand seconds duration. In
previous MOLSINK testing with another thruster, Chir%vella (Ref. 25) also
detected no contaminants at a QCM temperature of 255 K, but some small mass
accretion was evident during runs of several hours duratlon at a crystal tem-

perature of 233K,
c. Duty Cycle Effects

Three different duty cycles were run during the testing. These included
pulse widths of 25, 100, and 200 milliseconds and off-times of 5, 10, and 20
seconds, respectively. The results for these threg*duty cycles are plotted in
Figure 17 at crystalotemperatures of 144K and 172°K. The plume asymmetry is
again evident at 144 K for the 100 ms/10 sec and the 25 ms/5 sec runs without
the thruster heat shield, but is less obvious at 100 ms/10 sec with heat shield
and 200 ms/20 seconds without. This demonstrates the ngn-repeatability of the
skewvness. Data scatter at a crystal temperature of 172 K is again pronounced,
with the centerline QCM J again yielding the most reliable values of mass depo-

sition rate.

The data from QCM J are shown in Figure 18 as a function of the average
propellant mass flowrate to the thruster. The flowrate for run 11 and 12 was
assumed to be the same as for run 14, since 14 1s close to 11 and 12 in terms of
thruster life, and because the addition of the small amount of water for run
14 does not affect the propellant density appreciably. The volumetric flowrate
from the piston flowmeter was converted to a mass flowrate using a density of

1 gm/cm” for the propellant, which is consistent with the measured propellant
inlet temperature of 297- 300°K (75-80 F) for all runs. The increase in the
centerline mass deposition rate with propellant flowrate at a crystal tempera-
ture of 144°K appears to be entirely due to the increase in the water flowrate.
The dashed line indicates a 307 increase In deposition rate corresponding to the
30% variation in propellant flowrate; the data follow the same trend. An in-
crease in the deposition rate with propellant flowrate is also evident at a
crystal temperature of 172°K, although in a much less interpretable manner.
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CENTERLINE MASS DEPOSITION RATE PER UNIT SOLID ANGLE, gm/sec/sr

1072 | 1 T | I
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A 144°K
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Figure 18, Centerline Deposition Versus Propellant Flowrate
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By dividing the measured centerline deposition rate by the calculated
centerline mass flux, the effects of flowrate can be removed. Figure 19 is a
plot of the normalized centerline mass'depositign rate versus the commanded
valve on-time. At a crystal temperature of 144 K, a 12% decrease occurs in the
measured normalized mass deposition rate, for the thruster without heat shield,
as the thruster valve on-time is increased from 25 to 200 milliseconds. This is
exactly what one would expect if any undecomposed hydrazine was appearing in the
plume. At 172°K, on the other hand, it appears that a 210% increase in depo-
sition is experienced as the pulse width increases from 25 to 200 milliseconds.
One interpretation which can be given this behavior is that the desorption from
the crystal surface at a given temperature will occur at the same rate for all
three pulse widths while the incident mass flux should increase in proportion to
the valve on-time. Since the deposition of either water or hydrazine at a
crystal temperature of 172°K would be dependent upon a localized pressure due to
the incident molecules, any increase in the length of time during which this
pressure is extant would increase the measured deposition. Tge occurrence of
mass desorption from the QCMs at a crystal temperature of 172K after thruster
shutdown seems to verify this mechanism of mass accretion.

The total data excursion at each crystal temperature is noted as a percent
of the total calculated centerline mass flux in Figure 19. Clearly, if even one
of the three data points upon which the deposition rate trends have been based
is in error the results would be inconclusive. However, even if the suppositions
discussed above relating to Figure 19 are not specious, the effects of pulse
width do not appear to be significant in terms of potential contamination
produced by the thruster, except as the duty cycle affects the average pro-
pellant flowrate.

D, Thruster Life Effects

The mass deposition rates for the baseline duty cycle at crystal temperatures
of 144°K, 172°K, and 200°K are shown in Figures 20 and 21 for each QCM locatiom.
The contamination recorded at a crystal temperatureoof 1447K gecreases as the
thruster is aged, while the deposition rates at 172 Koand 200K increase. 1In
fact, the after-aging baseline tests at 172K and 200K yielded the most con-
sistent and easily interpretable QCM frequency-time plots of any runs at these
crystal temperatures. An examination of the 200 K data taken after aging
reveals a uniform plume profile detected at all QCM locations, as opposed to the
great scatter evidenced during ore-aging testing.

A summary of the effects of thruster life on the propellant flowrate, equili-
brium catalyst bed temperature, and the normalized centerline mass deposition
rates is given in Figure 22. (Lines have been drawn through the data of Figure
22 for clarity only and are not meant to imply a functional relationship.)

The decrease in propellant flowrate with increasing number of pulses is not
an uncommon phenomenon in monopropellant thruster testing. It is attributed to
an increase in pressure drop across the catalyst bed due to tighter packing of
the catalyst particles. The number of catalyst fines generated increases with
the number of starts, and these fines tend to plug the interstices between cata-
lyst particles before eventually working their way out of the nozzle. In addition,
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NORMALIZED CENTERLINE MASS DEPOSITION RATE (DIMENSIONLESS)
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Figure 19. Effect of Pulse Width
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CRYSTAL TEMPERATURE = 144°K
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the hot firing of the thruster results in a shrinkage of the catalyst material,
thus further decreasing the total catalyst bed volume. During testing with an
experimental 4,5N thruster using 20-30 mesh Shell 405 catalyst, Sayer (Ref. 8)
has noted a 36% decrease in the catalyst pack volume after 500 ambient tempera-
ture starts., Catalyst weight loss accounted for 29% of the decrease while the 7%
difference was attributed to catalyst material shrinkage. A 497 propellant
flowrate decrease and a 13007 increase in pressure drop across the catalyst bed
were also observed. These results, although greatly dependent upon catalyst
retention techniques and injector design, give some insight into the results
shown in Figure 22. Figure 23 depicts the change in the chamber pressure pulse
shape during the aging sequence. These traces were obtained from an oscillo-
scope during firings with a 90 ms pulse width. A 30%Z decrease in peak chamber
pressure with age is evident, even though the thruster was not subjected to
ambient temperature starts.

After the 100,000 pulse aging sequence, the number of pulses which could be
run before the MOLSINK chamber avalanched (see Section II-A) continually de-
creased with time, This would indicate that more hydrogen was being Injected
into the MOLSINK than during pre-aging testing, which would in turn imply an
increase in the percent ammonia dissociation. The increase in the percent
ammonia dissociation can be attributed to the longer resldence time of the gases
within the catalyst bed due to an Increase in the resistance to flow through the
bed. The decrease in the equilibrium catalyst bed temperature shown in Figure 22
is consistent with the supposition of increased ammonia dissociation since this

reaction is endothermic.

The decrease of 46% in the contaminants measured at a crystal temperature
of 144°K can also be attributed to an increase in the gas residence time within
the catalyst bed, coupled with the availability of more active catalyst sites
per molecule due to the reduced propellant flowrate. It has previously been
established that any undeco%posed hydrazine appearing in the plume will show up
as contamination at the 144 K surface temperature, and increased hydrazine
decomposition could account for the decreased deposition shown in Figure 22.

Tge most perplexing results are found at the higher crystal temperatures.
At 172K a 822 increase in contamination is observed, while a 557 increase is
seen at 200 K. This might be the result of undecomposed aniline leaving the
thruster, although this would seem to be at odds with the conclusion drawn about
increased hydrazine and ammonia decomposition.

The postulated decrease in raw hydrazine detected at 144°K would also argue
against the formation of greater amount of hydrazine hydrate or other hydrazine
compounds on the 172°K and 200°K crystal surfaces since less hydrazine would be
available for this formation. It is possible that the carbon buildup within
the catalyst bed from the aniline decomposition reaches such a level that hydro-
carbon formation and expulsion become likely. Without any additional data,
however, the origin and identification of the contaminants deposited at crystal
temperatures of 172°K and 200°K will remain unknown.
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E. Effect of Pulse Train Transients

The first few pulses 1in a pulse train generally occur at a catalyst bed
temperature which is lower than the train equilibrium temperature for a given
duty cycle. These initial pulses might be expected to generate different amounts
of contaminants than the later pulses in the train. Runs 8, 9, and 10 were short
runs of 60 pulses each at a duty cycle of 200 ms on and 20 seconds off, and were
conducted at a crystal temperature of 144°K. The digital data acquisition system
sampled each of the QCMs every 88 seconds, or after approximately every fourth
pulse, yilelding 14 data points. These data points were then fitted in a least
squares sense with cubic splines having continuous second derivatives. The deri-
vatives of the resulting spline fits were then converted to mass deposition rates
as discussed in Appendix A, Run 7 was conducted under the same conditions as
runs 8, 9, and 10, except that it was extended for 419 pulses; in this case the
data from the first 60 pulses were fit with one spline whjle the remaining data
were fit with another. The mass deposition rate in gm/cm“/sec from the center-
line QCM J for each of the four runs is plotted as a function of pulse number in
Figure 24, The deposition rates were obtained from the fitted data at five-
pulse intervals., While the numerical procedures used to fit the data will
clearly have some influence on the results (note especially run 8), it is obvi-
ous from Figure 24 that a decrease in mass deposition rate is evident as the
number of pulses increase for all four runs. The initial mass deposition rates
shown are 19-42%7 higher than the equilibrium mass deposition rate obtained from

run 7.

Thermal equilibrium in the catalyst bed is achieved for the 200 ms on/
20 sec off duty cycle after approximately 30 pulses without the thruster heat
shield; a duty cycle of 100 ms on/10 sec off requires 60 pulses, and a duty
cycle of 25 ms on/5 sec off requires approximately 150 pulses to obtain the
train equilibrium conditions. ' If the increased deposition is due to undecomposed
hydrazine being expelled during the thruster warmup period, one would expect that
the shorter pulse widths would produce even greater amounts since the tempera-
ture achieved per pulse is less.

V. CONCLUSIONS AND RECOMMENDATIONS

Based upon the results presented in the previous section, the following
conclusions are drawn:

(1) The spread of the monopropellant thruster exhaust contaminants which
adhere to a 144K surface can be approximated to good accuracy by the
Hill and Draper (Ref. 31) correlation for regions of the plume within
30° of the nozzle centerline if a proper selection of the ratio of
specific heats, Y, is made. TFor the present experiment a value of
Y= 1.41 was indicated, which 1s equivalent to an evaluation of Y at a
temperature near that of the nozzle exit. The exhaust plume profile
of a small monopropellant thruster might be calculated within this
region using these results if it is assumed that the other consituents
of the exhaust expand at a comparable rate. ‘

(2) Testing $n the MOLSINK facility at a nominal pressure of 10—4 Pa
(7.5x107/ torr) revealed that ammonia from a monopropellant thruster
exhausg is the predominant contaminant on a surface at a temperature
of 106"K. Water will be a contaminant on surfaces at 144 K in quanti-
ties directly proportional to its availability in the propellant.
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(3)

(4)

(5)

Undecomposed hydrazine will also probably remain on surfaces of around
1440K Hydrazine and water may also show up on surfaces of 172°k and
200K, but subsequent desorption is likely if exposure to a space
environment 1is maintained. Less ghan 0.05% of the incident mass flux
will remain on surfaces above 172K for any appreciable length of time.

For the three duty cycles tested, 25 ms on/5 sec off, 100 ms on/l0 sec
off, 200 ms on/20 sec off, no significant change was noted as a func-
tion of duty cycle in the measured deposition rates on surfaces at
164°K or 172° K, except as the duty cycle affected the average propel-
lant flowrate during the pulse train,

For the monopropellant thruster used in this experiment, aging of over
130,000 pulses seemed to produce less ammonia and a 46% decrease in the
mass deposition which was measured at a surface temperature of 1440K,
the latter possibly corresponding to a decrease of undecomposed hydra-
zine in the plume. An increase in the contaminants which were de-
posited at surface temperatures of 172°K and 200°K was also noted, but
insufficient data were available for identification.

Up to 42% h%gher mass deposition rates were seen at a surface tempera-
ture of 144K for the first pulses in a train at a duty cycle of 200 ms
on/20 sec off with a 478°K (400°F) initial catalyst bed temperature.

Based upon the experience gained in the course of this experiment, the fol-
lowing recommendations are offered:

(1)

(2)

(3)

The use of the MOLSINK facility to obtain contamination data from mono-
propellant thrusters was a natural continuation of previous efforts to

define the thruster exhaust plume flow field. However, the use of the

QCM for contamination studies should be combined with additional diag-

nostic tools so that the QCM data is more easily interpretable, espec-

ially as relates to contaminant species,

Measurements of the monopropellant thruster contamination on surfaces
at 172°K and 200°K were much less successful than at lower temperatures
due to the small mass accretion rates experienced at the higher temp-
eratures, Since this is a critical temperature band for many space-
craft components, additional measurements of the mass deposition rates
and identification of the contaminant species of these temperatures is
warranted. At these low deposition rates, a more sensitive QCM, per-
haps with a 10 MHz crystal, should be utilized.

The QCMs should be calibrated against some secondary standard, pref-
erably ip gsitu, over the entire temperature range of operation. An
investigation of molecular scattering after passing the collimator and
molecular migration towards the doublet reference electrode should be
undertaken, especially as pertains to non-normal angle of incidence.
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APPENDIX A

Derivation of Relations Pertaining
to the Quartz Crystal Microbalance

1. TEMPERATURE COMPENSATION

In Section II-B the change in crystal frequency Af is expressed as a function
of the change in deposited mass Am and the change in crystal temperature AT:

Af = Cp Om + Cp AT

where Cp and Cr are referred to as the mass and temperature coefficients, res-
pectively. As discussed in Section II-B, for a proper selection of the crystal
cut, the temperature coefficient can be reduced to an insignificant value over a
1imited temperature range. With proper QCM design, e.g., one employing the crys-
tal doublet, an additional temperature compensation may be obtained as follows.

Consider two crystals, designated 1 and 2, exposed to mass deposition and
temperature variation. The corresponding change in frequency can be expressed
as:

Af, = C Am

m Amp + Cpy ATy (A1)

1

Afp = Cp, bmy + Cp AT, (a2)

If both crystals have identical plezoelectric properties and are kept at the same
temperature, then

= CT = C ; and

ATl = AT2 = AT (A3)

Subtracting equation (A2) from equation (Al) and substituting the relations (A3)
yields:

AF = Af) - 0f) = Cm (Aml - bmy)

where AF is the beat frequency between the two crystals. If crystal 2 is pro-
tected from mass deposit such that Am, = 0, then

AF = C_ 4m; (Ad4)
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and the beat frequency 1s thus correlated with the mass deposited on the exposed
crystal. In practice, the conditions AT; = AT, and &mp = 0 are achieved for the
doublet by screening half of the crystal with Mylar, which is transparent to the
radiation environment. (See Figure 8.)

II. MASS COEFFICIENT

The following is a simplified derivation of the relationship between depo-
sited mass and change in crystal frequency. For a more rigorous derivation which
provides greater insight into the limitations of the relationships developed here,
the reader is referred to the analyses of Stockbridge (Ref. 32) or Glassford
(Ref. 33).

The relationship between the natural frequency f of a quartz crystal excited
in the thickness shear mode and the crystal plate thickness t is given by:

f = N/t (AS5)

where N is a constant. The crystal thickness may be expressed as

=—E
t = A (a6)

where m, p, and A are the mass, density, and area of the crystal plate, respec-
tively. Substituting equation (A6) into (A5) yields:

m

By differentitating f with respect to m, an expression 1s obtained which relates
a change in the crystal mass dm due to a change in thickness to the corresponding
change in frequency df:

df = - & 4 (A8)

2
me

Solving equation (A7) for m and substituting into equation (A8) yields:
df = - ﬁEK dm (A9)

The assumption will now be made that the change in mass dm can be effected by de-
positing a mass other than quartz on the surface of the crystal. For finite

changes, this expression becomes:
£2
€ Am (A10)

Af = NoA
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whete f.is the natural frequency of vibration of the crytal. (The negative
sign has been dropped since it can be changed in the electronics.)

If (AlQ) is now compared to (Al), we get

£2
Co * i (A11)
III. WORKING RELATIONS
The QCM beat frequency may now be expressed as
£2 £2
OF = Cp bm = Nog tm = ﬁ;cT A—X (a12)

The crystals employed in the present experiment were of such a thickness
that f. = 5 MHz, For an AT cut crystal the constant N is 1.670 X 10® Hz-mm
(Ref. 34), and the density of quartz is 2.65 gm/cm3 (Ref. 35). Substituting
these values into equation (Al2) and rearranging yields

m o= 2B o= 1,77 X 1078 oF
Dividing both sides by an incremental time At and letting At + O finally yields
M = 1.77 X108 F

where M is the mass flux per unit area, gm/cmZ/sec, and F is the time rate of
change of the crystal beat frequency, Hz/sec.
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APPENDIX B

Data Reduction

The beat frequency recorded at each time slice for each of the QCMs was
plotted as a function of time and curvefit in the least squares sense with a
twice differentiable cubic spline. This technique almost always provided a bet-
ter fit to the data than a linear fit since deviations from a straight line were
usually evident at the beginning and end of a test. The derivative of the fit-
ted curve was then multiplied by a constant Eo convert the time rate of change of
frequency to a mass deposition rate in gm/cm”/sec (see Appendix A). A frequency-
time plot for QCM I during run number 2 at 172°K is shown as an example in Fig-
ure B-1. The line through the data is the cubic spline fit. The mass deposition
rate obtained from Figure B-1 is shown in Figure B-2.

For each of the QCMs, a correction was made for the decrease in effective
surface area due to non-normal incident flux. This consisted of dividing the
mass deposition rate by the cosine of the angle of incidence on the crystal sur-
face. The mass deposition rate per unit solid angle, gm/sec/sr, was then obtained
by multiplying the corrected measured deposition rate by the square of the dis-
tance between thruster and crystal. The location of each QCM with respect to
the thruster is shown in Figure 10. Not shown in Figure 10 is a displacement of
1.35 cm out of the plane of the page of the bar upon which the QCMs are mounted,
and a 5° tilt of the bar away from the thruster.

The location and factors used in the reduction of the readings from each QCM
are summarized below.

Distance From

7 True Angle Angle Between
From Nozzle Incident Streamline Nozzle to
Centerline and Surface Normal Correction Crystal
QCM (Degrees) (Degrees) Factor (em)
H 29.72 30.16 0.865 130.47
I 16.8 17.70 0.953 118.36
J 1.89 5.95 0.995 113.37
K 13.28 14.43 0.968 116.43
L 26.80 27.34 0.888 126.94
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Figure B-1. Beat Frequency Versus Time
for QCM "1" During Run 2
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MASS DEPOSITION RATE, gm/cm?/sec
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Figure B-2. Mass Deposition Rate as Derived
from Figure B-1.
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The Eill and Draper relation

dn) [fdm = - 62 (1-cos 6)2
a/8[aa)0-0

can be solved for the § which minimizes the sum of the squares of the deviations
of the data from the fitted relationship. The mass deposition rate per unit
solid angle from QCMs H and I is divided by that from QCM J and set equal to 8y-
The "best" & in the least squares sense can then be solved for from the relation:

i (In g4) (1-cos 6;)2
0 = _ i=
2 (l-cos 01)4

where 6i 1s the angle between the nozzle centerline and the QCM i. Crystals
H, I and J were used from runs 3, 5, 7, 11, 13, and 17 (a total of n = 12
data points) to compute é= 9.59.
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'_45. .

=

DEFINITION OF SYMBOLS

Surface area of crvstal, cm?

Thrust coefficient, dimensionless

Maximum theoretical thrust coefficient, dimensionless
QCM mass coefficient, Hz/gm

QCM temperature coefficient, Hz/°K

Frequency, Hz

Natural frequency of vibration of the quartz crystal
prior to mass deposition, Hz

Beat frequency; difference in frequency of each side of
crystal doublet, Hz

Time rate of change of QCM beat frequency, Hz/sec

"wey

Mass deposition rate per unit solid angle for QCM "i
divided by the mass deposition rate per unit solid
angle at the plume centerline, dimensionless

Mass, grams

Time rate of change of mass, gm/sec

Average propellant flowrate to the thruster as determined
by the piston flowmeter during a run, gm/sec

Mass flux per unit area, gm/cm?/sec

Total number of data points over which the summation is
performed

Frequency constant, Hz-mm

Thickness of crystal blank, cm

Temperature, °K

Ratio of specific heats of the exhaust gases, dimensionless

Plume spreading parameter in the analytical approximation of
Bill and Draper (Ref. 31) dimensionless

Angle from nozzle centerline, degrees
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Angle of QCM "I" from the nozzle centerline,
Density of quartz, gm/cm3

Solid angle, steradians
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